Structural roles of monovalent cations in the HDV ribozyme.

نویسندگان

  • Ailong Ke
  • Fang Ding
  • Joseph D Batchelor
  • Jennifer A Doudna
چکیده

The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme.

The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solv...

متن کامل

Monovalent cations use multiple mechanisms to resolve ribozyme misfolding.

Recent efforts have been made to unravel the independent roles of monovalent cations in RNA folding, primarily using the Tetrahymena ribozyme as a model. Here we report how monovalent cations impact the folding of the Candida ribozyme. Interestingly, this ribozyme requires an order of magnitude less monovalent cations (Na+ and Tris+) to commit to a new folding starting state in which the J3/4:P...

متن کامل

Inverse Thio Effects in the Hepatitis Delta Virus Ribozyme Reveal that the Reaction Pathway Is Controlled by Metal Ion Charge Density

The hepatitis delta virus (HDV) ribozyme self-cleaves in the presence of a wide range of monovalent and divalent ions. Prior theoretical studies provided evidence that self-cleavage proceeds via a concerted or stepwise pathway, with the outcome dictated by the valency of the metal ion. In the present study, we measure stereospecific thio effects at the nonbridging oxygens of the scissile phosph...

متن کامل

The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone.

BACKGROUND The catalytic activity of RNA enzymes is thought to require divalent metal ions, which are believed to facilitate RNA folding and to play a direct chemical role in the reaction. RESULTS We have found that the hammerhead, hairpin and VS ribozymes do not require divalent metal ions, their mimics such as [Co(NH3)6]3+, or even monovalent metal ions for efficient self-cleavage. The HDV ...

متن کامل

Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics.

The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2007